Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Medicina (Kaunas) ; 59(5)2023 Apr 29.
Article in English | MEDLINE | ID: covidwho-20239767

ABSTRACT

Background and Objectives: Hydroxychloroquine (HCQ) combined with azithromycin (AZM) has been widely administered to patients with COVID-19 despite scientific controversies. In particular, the potential of prolong cardiac repolarization when using this combination has been discussed. Materials and Methods: We report a pragmatic and simple safety approach which we implemented among the first patients treated for COVID-19 in our center in early 2020. Treatment contraindications were the presence of severe structural or electrical heart disease, baseline corrected QT interval (QTc) > 500 ms, hypokalemia, or other drugs prolonging QTc that could not be interrupted. Electrocardiogram and QTc was evaluated at admission and re-evaluated after 48 h of the initial prescription. Results: Among the 424 consecutive adult patients (mean age 46.3 ± 16.1 years; 216 women), 21.5% patients were followed in conventional wards and 78.5% in a day-care unit. A total of 11 patients (2.6%) had contraindications to the HCQ-AZ combination. In the remaining 413 treated patients, there were no arrhythmic events in any patient during the 10-day treatment regimen. QTc was slightly but statistically significantly prolonged by 3.75 ± 25.4 ms after 2 days of treatment (p = 0.003). QTc prolongation was particularly observed in female outpatients <65 years old without cardiovascular disease. Ten patients (2.4%) developed QTc prolongation > 60 ms, and none had QTc > 500 ms. Conclusions: This report does not aim to contribute to knowledge of the efficacy of treating COVID-19 with HCQ-AZ. However, it shows that a simple initial assessment of patient medical history, electrocardiogram (ECG), and kalemia identifies contraindicated patients and enables the safe treatment of COVID-19 patients with HCQ-AZ. QT-prolonging anti-infective drugs can be used safely in acute life-threatening infections, provided that a strict protocol and close collaboration between infectious disease specialists and rhythmologists are applied.


Subject(s)
COVID-19 , Long QT Syndrome , Adult , Humans , Female , Middle Aged , Aged , Hydroxychloroquine/adverse effects , Azithromycin/adverse effects , SARS-CoV-2 , Long QT Syndrome/chemically induced , COVID-19 Drug Treatment , Electrocardiography/methods
2.
J Clin Med ; 12(6)2023 Mar 22.
Article in English | MEDLINE | ID: covidwho-2256994

ABSTRACT

A few days after being infected with SARS-CoV-2, a fraction of people remain asymptomatic but suffer from a decrease in arterial oxygen saturation in the absence of apparent dyspnea. In light of our clinical investigation on the modulation of molecules belonging to the renin angiotensin system (RAS) in COVID-19 patients, we propose a model that explains 'silent hypoxia'. The RAS imbalance caused by SARS-CoV-2 results in an accumulation of angiotensin 2 (Ang II), which activates the angiotensin 2 type 1 receptor (AT1R) and triggers a harmful cascade of intracellular signals leading to the nuclear translocation of the hypoxia-inducible factor (HIF)-1α. HIF-1α transactivates many genes including the angiotensin-converting enzyme 1 (ACE1), while at the same time, ACE2 is downregulated. A growing number of cells is maintained in a hypoxic condition that is self-sustained by the presence of the virus and the ACE1/ACE2 ratio imbalance. This is associated with a progressive worsening of the patient's biological parameters including decreased oxygen saturation, without further clinical manifestations. When too many cells activate the Ang II-AT1R-HIF-1α axis, there is a 'hypoxic spillover', which marks the tipping point between 'silent' and symptomatic hypoxia in the patient. Immediate ventilation is required to prevent the 'hypoxic spillover'.

3.
J Med Virol ; 2022 Aug 28.
Article in English | MEDLINE | ID: covidwho-2229042

ABSTRACT

The nature and dynamics of mutations associated with the emergence, spread, and vanishing of SARS-CoV-2 variants causing successive waves are complex. We determined the kinetics of the most common French variant ("Marseille-4") for 10 months since its onset in July 2020. Here, we analyzed and classified into subvariants and lineages 7453 genomes obtained by next-generation sequencing. We identified two subvariants, Marseille-4A, which contains 22 different lineages of at least 50 genomes, and Marseille-4B. Their average lifetime was 4.1 ± 1.4 months, during which 4.1 ± 2.6 mutations accumulated. Growth rate was 0.079 ± 0.045, varying from 0.010 to 0.173. Most of the lineages exhibited a bell-shaped distribution. Several beneficial mutations at unpredicted sites initiated a new outbreak, while the accumulation of other mutations resulted in more viral heterogenicity, increased diversity and vanishing of the lineages. Marseille-4B emerged when the other Marseille-4 lineages vanished. Its ORF8 gene was knocked out by a stop codon, as reported in SARS-CoV-2 of mink and in the Alpha variant. This subvariant was associated with increased hospitalization and death rates, suggesting that ORF8 is a nonvirulence gene. We speculate that the observed heterogenicity of a lineage may predict the end of the outbreak.

4.
Eur J Oral Sci ; : e12903, 2022 Nov 20.
Article in English | MEDLINE | ID: covidwho-2136823

ABSTRACT

The emerging coronavirus pneumonia epidemic caused by the SARS-CoV-2 infection has spread rapidly around the world. The main routes of transmission of SARS-CoV-2 are currently recognised as aerosol/droplet inhalation. However, the involvement of the oral cavity in coronavirus disease 2019 (COVID-19) is poorly known. The current data indicates the presence of viral RNA in oral samples, suggesting the implication of saliva in SARS-CoV-2 transmission, however, no direct observation of SARS-CoV-2 particles in different oral samples has been reported. In this study, we investigated whether particles of SARS-CoV-2 were present in oral samples collected from three symptomatic COVID-19 patients. Using scanning electron microscopy (SEM), the correlative strategy of light microscopy and electron microscopy and immunofluorescence staining, we showed the presence of SARS-like particles in RT-qPCR SARS-CoV-2-positive saliva, dental plaque and gingival crevicular fluid (GCF) samples. In the saliva samples, we demonstrated the presence of epithelial oral cells with morphogenetic features of SARS-CoV-2 infected cells. Inside those cells, vacuoles filled with nascent particles were observed, suggesting the potential infection and replication of SARS-CoV-2 in oral tissues. Our results corroborate previous studies and confirm that the oral cavity may be a potential niche for SARS-CoV-2 infection and a potential source of transmission.

5.
Sci Rep ; 12(1): 18721, 2022 Nov 04.
Article in English | MEDLINE | ID: covidwho-2106463

ABSTRACT

At the time of a new and unprecedented viral pandemic, many questions are being asked about the genomic evolution of SARS-CoV-2 and the emergence of different variants, leading to therapeutic and immune evasion and survival of this genetically highly labile RNA virus. The nasopharyngeal persistence of infectious virus beyond 17 days proves its constant interaction with the human immune system and increases the intra-individual mutational possibilities. We performed a prospective high-throughput sequencing study (ARTIC Nanopore) of SARS-CoV-2 from so-called "persistent" patients, comparing them with a non-persistent population, and analyzing the quasi-species present in a single sample at time t. Global intra-individual variability in persistent patients was found to be higher than in controls (mean 5.3%, Standard deviation 0.9 versus 4.6% SD 0.3, respectively, p < 0.001). In the detailed analysis, we found a greater difference between persistent and non-persistent patients with non-severe COVID 19, and between the two groups infected with clade 20A. Furthermore, we found minority N501Y and P681H mutation clouds in all patients, with no significant differences found both groups. The question of the SARS-CoV-2 viral variants' genesis remains to be further investigated, with the need to prevent new viral propagations and their consequences, and quasi-species analysis could be an important key to watch out.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Quasispecies , Prospective Studies
6.
Infect Genet Evol ; 105: 105360, 2022 Sep 05.
Article in English | MEDLINE | ID: covidwho-2007950

ABSTRACT

Among the multiple SARS-CoV-2 variants identified since summer 2020, several have co-circulated, creating opportunities for coinfections and potentially genetic recombinations that are common in coronaviruses. Viral recombinants are indeed beginning to be reported more frequently. Here, we describe a new SARS-CoV-2 recombinant genome that is mostly that of a Omicron 21L/BA.2 variant but with a 3' tip originating from a Omicron 21K/BA.1 variant. Two such genomes were obtained in our institute from adults sampled in February 2022 in university hospitals of Marseille, southern France, by next-generation sequencing carried out with the Illumina or Nanopore technologies. The recombination site was located between nucleotides 26,858-27,382. In the two genomic assemblies, mean sequencing depth at mutation-harboring positions was 271 and 1362 reads and mean prevalence of the majoritary nucleotide was 99.3 ± 2.2% and 98.8 ± 1.6%, respectively. Phylogeny generated trees with slightly different topologies according to whether genomes analyzed were depleted or not of the 3' tip. This 3' terminal end brought in the Omicron 21L/BA.2 genome a short transposable element of 41 nucleotides named S2m that is present in most SARS-CoV-2 except a few variants among which the Omicron 21L/BA.2 variant and may be involved in virulence. Importantly, this recombinant is not detected by currently used qPCR that screen for variants in routine diagnosis. The present observation emphasizes the need to survey closely the genetic pathways of SARS-CoV-2 variability by whole genome sequencing, and it could contribute to gain a better understanding of factors that lead to observed differences between epidemic potentials of the different variants.

7.
Ther Clin Risk Manag ; 18: 603-617, 2022.
Article in English | MEDLINE | ID: covidwho-1951849

ABSTRACT

Objectives: We evaluated the 6-week mortality of SARS-CoV-2 hospitalized patients treated using a standardized protocol in 2020 in Marseille, France. Methods: A retrospective monocentric cohort study was conducted in the standard hospital wards at the Institut Hospitalo-Universitaire Méditerranée Infection, between March and December 2020 in adults with SARS-CoV-2 PCR-proven infection. Results: Of the 2111 hospitalized patients (median age, 67 [IQR 55-79] years; 1154 [54.7%] men), 271 were transferred to the intensive care unit (12.8%) and 239 died (11.3%; the mean age of patients who died was 81.2 (±9.9)). Treatment with hydroxychloroquine plus azithromycin (HCQ-AZ), used in 1270 patients, was an independent protective factor against death (0.68 [0.52 - 0.88]). This effect was consistent for all subgroups of age, comorbidities, severity of the disease and comedications with zinc or corticosteroids. Zinc was independently protective against death (0.39 [0.23 - 0.67]), in a subgroup analysis of patients treated with HCQ-AZ without dexamethasone. The use of high-flow oxygen therapy in elderly patients who were not eligible for intensive care unit transfer saved 19 patients (33.9%). Conclusions: In our 2020 cohort, treating COVID-19 with HCQ-AZ was associated with lower mortality. These results need to be analyzed in the context of academic discussions about observational studies versus randomized clinical trials. More data will deserve to be analyzed in the SARS-Cov 2 variants, vaccination and post-vaccination era.

8.
Viruses ; 14(6)2022 06 10.
Article in English | MEDLINE | ID: covidwho-1911620

ABSTRACT

Genetic recombination is a major evolutionary mechanism among RNA viruses, and it is common in coronaviruses, including those infecting humans. A few SARS-CoV-2 recombinants have been reported to date whose genome harbored combinations of mutations from different mutants or variants, but only a single patient's sample was analyzed, and the virus was not isolated. Here, we report the gradual emergence of a hybrid genome of B.1.160 and Alpha variants in a lymphoma patient chronically infected for 14 months, and we isolated the recombinant virus. The hybrid genome was obtained by next-generation sequencing, and the recombination sites were confirmed by PCR. This consisted of a parental B.1.160 backbone interspersed with two fragments, including the spike gene, from an Alpha variant. An analysis of seven sequential samples from the patient decoded the recombination steps, including the initial infection with a B.1.160 variant, then a concurrent infection with this variant and an Alpha variant, the generation of hybrid genomes, and eventually the emergence of a predominant recombinant virus isolated at the end of the patient's follow-up. This case exemplifies the recombination process of SARS-CoV-2 in real life, and it calls for intensifying the genomic surveillance in patients coinfected with different SARS-CoV-2 variants, and more generally with several RNA viruses, as this may lead to the appearance of new viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Genome, Viral , Humans , Immunocompromised Host , Mutation , SARS-CoV-2/genetics
9.
Front Microbiol ; 12: 786233, 2021.
Article in English | MEDLINE | ID: covidwho-1903053

ABSTRACT

After the end of the first epidemic episode of SARS-CoV-2 infections, as cases began to rise again during the summer of 2020, we at IHU Méditerranée Infection in Marseille, France, intensified the genomic surveillance of SARS-CoV-2, and described the first viral variants. In this study, we compared the incidence curves of SARS-CoV-2-associated deaths in different countries and reported the classification of SARS-CoV-2 variants detected in our institute, as well as the kinetics and sources of the infections. We used mortality collected from a COVID-19 data repository for 221 countries. Viral variants were defined based on ≥5 hallmark mutations along the whole genome shared by ≥30 genomes. SARS-CoV-2 genotype was determined for 24,181 patients using next-generation genome and gene sequencing (in 47 and 11% of cases, respectively) or variant-specific qPCR (in 42% of cases). Sixteen variants were identified by analyzing viral genomes from 9,788 SARS-CoV-2-diagnosed patients. Our data show that since the first SARS-CoV-2 epidemic episode in Marseille, importation through travel from abroad was documented for seven of the new variants. In addition, for the B.1.160 variant of Pangolin classification (a.k.a. Marseille-4), we suspect transmission from farm minks. In conclusion, we observed that the successive epidemic peaks of SARS-CoV-2 infections are not linked to rebounds of viral genotypes that are already present but to newly introduced variants. We thus suggest that border control is the best mean of combating this type of introduction, and that intensive control of mink farms is also necessary to prevent the emergence of new variants generated in this animal reservoir.

10.
Front Microbiol ; 13: 871627, 2022.
Article in English | MEDLINE | ID: covidwho-1875419

ABSTRACT

While populations at risk for severe SARS-CoV-2 infections have been clearly identified, susceptibility to the infection and its clinical course remain unpredictable. As the nasopharyngeal microbiota may promote the acquisition of several respiratory infections and have an impact on the evolution of their outcome, we studied the nasopharyngeal microbiota of COVID-19 patients in association with baseline disease-related clinical features compared to that of patients tested negative. We retrospectively analyzed 120 nasopharyngeal pseudonymized samples, obtained for diagnosis, divided into groups (infected patients with a favorable outcome, asymptomatic, and deceased patients) and patients tested negative for SARS-CoV-2, by using Illumina-16S ribosomal ribonucleic acid (rRNA) sequencing and specific polymerase chain reaction (PCR) targeting pathogens. We first found a depletion of anaerobes among COVID-19 patients, irrespective of the clinical presentation of the infection (p < 0.029). We detected 9 taxa discriminating patients tested positive for SARS-CoV-2 from those that were negative including Corynebacterium propinquum/pseudodiphtericum (p ≤ 0.05), Moraxella catarrhalis (p ≤ 0.05), Bacillus massiliamazoniensis (p ≤ 0.01), Anaerobacillus alkalidiazotrophicus (p ≤ 0.05), Staphylococcus capitis subsp. capitis (p ≤ 0.001), and Afipia birgiae (p ≤ 0.001) with 16S rRNA sequencing, and Streptococcus pneumoniae (p ≤ 0.01), Klebsiella pneumoniae (p ≤ 0.01), and Enterococcus faecalis (p ≤ 0.05) using real-time PCR. By designing a specific real-time PCR, we also demonstrated that C. propinquum is decreased in asymptomatic individuals compared to other SARS-CoV 2 positive patients. These findings indicate that the nasopharyngeal microbiota as in any respiratory infection plays a role in the clinical course of the disease. Further studies are needed to elucidate the potential role in the clinical course of the disease of M. catarrhalis, Corynebacterium accolens, and more specifically Corynebacterium propinquum/diphteriticum in order to include them as predictors of the severity of COVID-19.

12.
J Epidemiol Glob Health ; 12(2): 196-205, 2022 06.
Article in English | MEDLINE | ID: covidwho-1821089

ABSTRACT

INTRODUCTION: Following the first year of the COVID-19 pandemic, a complete analysis of the characteristics of the deceased hospitalized patients was performed, to identify factors related to premature mortality and to compare patient profiles according to the epidemic periods. METHODS: Retrospective analysis of 1104 deceased patients in two University Hospitals in South-eastern France, between March 1, 2020 and March 12, 2021 from Hospital's electronic medical records was performed. RESULTS: Mean age was 80 years (± 11.1) and 10% of the deceased were younger than 65 years with specific comorbidities, e.g., genetic conditions, metastatic cancer, or massive obesity. Among the three clusters identified, two clusters (75% of deceased patients) include very elderly patients with numerous comorbidities, and differ by their proportion of dependent institutionalized patients. The third cluster is made up of younger patients with fewer but severe comorbidities. Deceased patients' profiles varied according to the epidemic periods: during the first period (March-June 2020), more patients were institutionalized. The second period (September-December2020) coincided with a higher mortality rate. CONCLUSIONS: This study confirmed that most patients hospitalized and dying from COVID-19 were frail, i.e., elderly and/or highly comorbid and that the small proportion of young patients had severe comorbidities.


Subject(s)
COVID-19 , Pandemics , Aged , Aged, 80 and over , COVID-19/epidemiology , Comorbidity , Hospitalization , Humans , Retrospective Studies , SARS-CoV-2
14.
Res Sq ; 2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1766249

ABSTRACT

SARS-CoV-2 infection fatality rate (IFR) doubles with every five years of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-ß are found in ~20% of deceased patients across age groups. In the general population, they are found in ~1% of individuals aged 20-70 years and in >4% of those >70 years old. With a sample of 1,261 deceased patients and 34,159 uninfected individuals, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to non-carriers. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRD was 17.0[95% CI:11.7-24.7] for individuals under 70 years old and 5.8[4.5-7.4] for individuals aged 70 and over, whereas, for autoantibodies neutralizing both molecules, the RRD was 188.3[44.8-774.4] and 7.2[5.0-10.3], respectively. IFRs increased with age, from 0.17%[0.12-0.31] for individuals <40 years old to 26.7%[20.3-35.2] for those ≥80 years old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84%[0.31-8.28] to 40.5%[27.82-61.20] for the same two age groups, for autoantibodies neutralizing both molecules. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, particularly those neutralizing both IFN-α2 and -ω. Remarkably, IFR increases with age, whereas RRD decreases with age. Autoimmunity to type I IFNs appears to be second only to age among common predictors of COVID-19 death.

15.
Research in Diagnostic and Interventional Imaging ; 1:100003-100003, 2022.
Article in English | EuropePMC | ID: covidwho-1755536

ABSTRACT

Objectives 1) To develop a deep learning (DL) pipeline allowing quantification of COVID-19 pulmonary lesions on low-dose computed tomography (LDCT). 2) To assess the prognostic value of DL-driven lesion quantification. Methods This monocentric retrospective study included training and test datasets taken from 144 and 30 patients, respectively. The reference was the manual segmentation of 3 labels: normal lung, ground-glass opacity(GGO) and consolidation(Cons). Model performance was evaluated with technical metrics, disease volume and extent. Intra- and interobserver agreement were recorded. The prognostic value of DL-driven disease extent was assessed in 1621 distinct patients using C-statistics. The end point was a combined outcome defined as death, hospitalization>10 days, intensive care unit hospitalization or oxygen therapy. Results The Dice coefficients for lesion (GGO+Cons) segmentations were 0.75±0.08, exceeding the values for human interobserver (0.70±0.08;0.70±0.10) and intraobserver measures (0.72±0.09). DL-driven lesion quantification had a stronger correlation with the reference than inter- or intraobserver measures. After stepwise selection and adjustment for clinical characteristics, quantification significantly increased the prognostic accuracy of the model (0.82 vs. 0.90;p<0.0001). Conclusions A DL-driven model can provide reproducible and accurate segmentation of COVID-19 lesions on LDCT. Automatic lesion quantification has independent prognostic value for the identification of high-risk patients.

16.
Front Med (Lausanne) ; 9: 794550, 2022.
Article in English | MEDLINE | ID: covidwho-1742226

ABSTRACT

Smell and taste disorders are frequent symptoms during acute COVID-19 and may persist long after the resolution of the initial phase. This study aims to estimate the proportion and risk factors for smell and/or taste disorders at the onset of symptoms and their persistence after more than 6 months of follow-up in COVID-19 patients. We analyzed a prospective cohort of COVID-19 patients admitted to our institute in Marseille, France in early 2020. After being discharged from the hospital, patients with smell and/or taste disorders were contacted for a telephone interview. Logistic regression analysis was performed to determine the risk factors for smell and/or taste disorders. A total of 3,737 patients were included, of whom 1,676 reported smell and/or taste disorders at the onset of symptoms. Taste and/or smell disorders were independently associated with being younger and female, a lower likelihood of suffering from diabetes, cardiovascular diseases and cancer, a longer delay between the onset of symptoms and consultation, and non-severe forms of COVID-19 at admission. Of the 605 patients with smell and/or taste disorders who were followed-up, 154 (25.5%) reported the persistence of symptoms for more than 6 months. At the time of follow-up, being female, having a chronic respiratory disease and using angiotensin-converting enzyme inhibitors (ACEis) were factors independently associated with the persistence of smell and/or taste disorders. In conclusion, the long-term persistence of olfactory and gustative disorders is frequent among COVID-19 patients, notably affecting female patients and patients who suffered from chronic respiratory diseases before infection. The role of ACEis needs to be further evaluated in larger numbers of patients.

17.
Travel Med Infect Dis ; 46: 102277, 2022.
Article in English | MEDLINE | ID: covidwho-1677190

ABSTRACT

BACKGROUND: We describe the epidemiology of the first cases diagnosed in our institute of infections with the SARS-CoV-2 Beta variant and how this variant was imported to Marseille. METHODS: The Beta variant was identified based on analyses of sequences of viral genomes or of a spike gene fragment obtained by next-generation sequencing using Illumina technology, or by a real-time reverse-transcription-PCR (qPCR) specific of the Beta variant. RESULTS: The first patient diagnosed as infected with the SARS-CoV-2 Beta variant was sampled on January 15, 2021. Twenty-nine patients were diagnosed in January 2021 (two weeks). Fifteen (52%) patients were of Comorian nationality. Eight (28%) had travelled abroad, including six who had returned from Comoros. Phylogeny based on SARS-CoV-2 genomes from 11 of these patients and their best BLAST hits from the GISAID database showed that seven patients, including the four returning from Comoros, were clustered with 27 other genomes from GISAID that included the six first Beta variant genomes described in Comoros in January 2021. CONCLUSIONS: Our analyses highlight that, as for the case of other SARS-CoV-2 variants that have been diagnosed in Marseille, the Beta variant was imported to Marseille through travel from abroad. It had limited spread in our geographical area.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Comoros/epidemiology , Genome, Viral , Humans , Mutation , Phylogeny , SARS-CoV-2/genetics
18.
Front Microbiol ; 12: 796807, 2021.
Article in English | MEDLINE | ID: covidwho-1674356

ABSTRACT

From January 18th to August 13th, 2021, 13,804 unvaccinated and 1,156 patients who had received at least one COVID-19 vaccine dose were tested qPCR-positive for SARS-CoV-2 in our center. Among vaccinated patients, 949, 205 and 2 had received a single, two or three vaccine doses, respectively. Most patients (80.3%) had received the Pfizer-BioNTech vaccine. The SARS-CoV-2 variants infecting vaccinated patients varied over time, reflecting those circulating in the Marseille area, with a predominance of the Marseille-4/20A.EU2 variant from weeks 3 to 6, of the Alpha/20I variant from weeks 7 to 25, and of the Delta/21A variant from week 26. SARS-CoV-2 infection was significantly more likely to occur in the first 13 days post-vaccine injection in those who received a single dose (48.9%) than two doses (27.4%, p< 10-3). Among 161 patients considered as fully vaccinated, i.e., >14 days after the completion of the vaccinal scheme (one dose for Johnson and Johnson and two doses for Pfizer/BioNTech, Moderna and Sputnik vaccines), 10 (6.2%) required hospitalization and four (2.5%) died. Risks of complications increased with age in a nonlinear pattern, with a first breakpoint at 54, 33, and 53 years for death, transfer to ICU, and hospitalization, respectively. Among patients infected by the Delta/21A or Alpha/20I variants, partial or complete vaccination exhibited a protective effect with a risk divided by 3.1 for mortality in patients ≥ 55 years, by 2.8 for ICU transfer in patients ≥ 34 years, and by 1.8 for hospitalization in patients ≥ 54 years. Compared to partial vaccination, complete vaccination provided an even stronger protective effect, confirming effectiveness to prevent severe forms of COVID-19.

19.
Arch Virol ; 167(2): 583-589, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1653517

ABSTRACT

We detected SARS-CoV-2 of PANGO lineage R.1 with the spike substitution E484K in three patients. Eleven other sequences in France and 8,831 worldwide were available from GISAID, 92% originating from Japan. The three genome sequences from our institute were phylogenetically closest to another from Guinea-Conakry, where one of the patients had travelled. These viruses did not exhibit any unusual features in cell culture. Spike structural predictions indicated a 1.3-time higher transmissibility index than for the globally spread B.1.1.7 variant but also an affinity loss for gangliosides that might have slowed dissemination. The spread of new SARS-CoV-2 mutants/variants is still not well understood and therefore difficult to predict, and this hinders implementation of effective preventive measures, including adapted vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Guinea , Humans , Mutation , Spike Glycoprotein, Coronavirus/genetics
20.
Viruses ; 13(12)2021 12 16.
Article in English | MEDLINE | ID: covidwho-1580428

ABSTRACT

BACKGROUND: We aimed to compare the clinical severity in patients who were coinfected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and rhinovirus or monoinfected with a single one of these viruses. METHODS: The study period ranged from 1 March 2020 to 28 February 2021 (one year). SARS-CoV-2 and other respiratory viruses were identified by real-time reverse-transcription-PCR as part of the routine work at Marseille University hospitals. Bacterial and fungal infections were detected by standard methods. Clinical data were retrospectively collected from medical files. This study was approved by the ethical committee of our institute. RESULTS: A total of 6034/15,157 (40%) tested patients were positive for at least one respiratory virus. Ninety-three (4.3%) SARS-CoV-2-infected patients were coinfected with another respiratory virus, with rhinovirus being the most frequent (62/93, 67%). Patients coinfected with SARS-CoV-2 and rhinovirus were significantly more likely to report a cough than those with SARS-CoV-2 monoinfection (62% vs. 31%; p = 0.0008). In addition, they were also significantly more likely to report dyspnea than patients with rhinovirus monoinfection (45% vs. 36%; p = 0.02). They were also more likely to be transferred to an intensive care unit and to die than patients with rhinovirus monoinfection (16% vs. 5% and 7% vs. 2%, respectively) but these differences were not statistically significant. CONCLUSIONS: A close surveillance and investigation of the co-incidence and interactions of SARS-CoV-2 and other respiratory viruses is needed. The possible higher risk of increased clinical severity in SARS-CoV-2-positive patients coinfected with rhinovirus warrants further large scale studies.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , Coinfection/virology , Picornaviridae Infections/epidemiology , Adolescent , Adult , Aged , COVID-19/diagnosis , Child , Coinfection/diagnosis , Female , Humans , Incidence , Male , Middle Aged , Picornaviridae Infections/diagnosis , Picornaviridae Infections/virology , Real-Time Polymerase Chain Reaction , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Retrospective Studies , Rhinovirus , SARS-CoV-2 , Severity of Illness Index , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL